Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Sci Total Environ ; 856(Pt 1): 158779, 2023 Jan 15.
Article in English | MEDLINE | ID: covidwho-2031677

ABSTRACT

In this study, brominated flame retardants (BFRs), phthalates, and organophosphate flame retardants (PFRs) were analyzed in indoor household dust collected during the COVID-19 related strict lockdown (April-July 2020) period. Floor dust samples were collected from 40 households in Jeddah, Saudi Arabia. The levels of most of the analyzed chemicals were visibly high and for certain chemicals multifold high in analyzed samples compared to earlier studies on indoor dust from Jeddah. Bis (2-ethylhexyl) phthalate (DEHP) was the primary chemical in these dust samples, with a median concentration of 769,500 ng/g of dust. Tris (2-butoxy ethyl) phosphate (TBEP) and Decabromodiphenyl ether (BDE 209) contributed the highest among PFRs and BFRs with median levels of 5990 and 940 ng/g of dust, respectively. The estimated daily exposure in the worst case scenario (23,700 ng/kg bw/day) for Saudi children was above the reference dose (20,000 ng/kg bw/day) for DEHP, and the hazardous index (HI) was also >1. The long-term carcinogenic risk was above the 1 × 10-5, indicating a risk to the health of Saudi young children from getting exposed to DEHP from indoor dust. This study draws attention to the increased indoor pollution during the lockdown period when all of the daily activities by adults and children were performed indoors, which negatively impacted human health, as suggested by the calculated risk. However, the current study has limitations and warrants more monitoring studies from different parts of the world to understand the phenomenon. At the same time, this study also highlights another side of COVID-19 related to our lives.


Subject(s)
Air Pollution, Indoor , COVID-19 , Diethylhexyl Phthalate , Flame Retardants , Child , Adult , Humans , Child, Preschool , Flame Retardants/analysis , Dust , Organophosphates/analysis , COVID-19/epidemiology , Air Pollution, Indoor/analysis , Environmental Exposure/analysis , Communicable Disease Control , Halogenated Diphenyl Ethers/analysis , Organophosphorus Compounds/analysis , Phosphates
2.
J Environ Manage ; 321: 115998, 2022 Nov 01.
Article in English | MEDLINE | ID: covidwho-1996339

ABSTRACT

Due to the extensive manufacturing and use of brominated flame retardants (BFRs), they are known to be hazardous, bioaccumulative, and recalcitrant pollutants in various environmental matrices. BFRs make flame-resistant items for industrial purposes (textiles, electronics, and plastics equipment) that are disposed of in massive amounts and leak off in various environmental matrices. The consumption of plastic items has expanded tremendously during the COVID-19 pandemic which has resulted into the increasing load of solid waste on land and water. Some BFRs, such as polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecane (HBCDs), are no longer utilized or manufactured owing to their negative impacts, which promotes the utilization of new BFRs as alternatives. BFRs have been discovered worldwide in soil, sludge, water, and other contamination sources. Various approaches such as photocatalysis-based oxidation/reduction, adsorption, and heat treatment have been found to eradicate BFRs from the environment. Nanomaterials with unique properties are one of the most successful methodologies for removing BFRs via photocatalysis. These methods have been praised for being low-cost, quick, and highly efficient. Engineered nanoparticles degraded BFRs when exposed to light and either convert them into safer metabolites or completely mineralize. Scientific assessment of research taking place in this area during the past five years has been discussed. This review offers comprehensive details on environmental occurrence, toxicity, and removal of BFRs from various sources. Degradation pathways and different removal strategies related to data have also been presented. An attempt has also been made to highlight the research gaps prevailing in the current research area.


Subject(s)
COVID-19 , Flame Retardants , Hydrocarbons, Brominated , Nanostructures , Environmental Monitoring , Flame Retardants/analysis , Flame Retardants/toxicity , Halogenated Diphenyl Ethers/analysis , Humans , Hydrocarbons, Brominated/analysis , Hydrocarbons, Brominated/toxicity , Pandemics , Plastics , Water
3.
Sci Total Environ ; 754: 142175, 2021 Feb 01.
Article in English | MEDLINE | ID: covidwho-739985

ABSTRACT

The contamination of water resource and food chain by persistent organic pollutants (POPs) constitutes a major environmental and human health concern worldwide. The aim of this study was to investigate the levels of POPs in irrigation water, soil and in Amaranthus viridis (A. viridis) from different gardening sites in Kinshasa to evaluate the potential environmental and human health risks. A survey study for the use of pesticides and fertilizers was carried out with 740 market gardeners. The levels of POPs (including organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), and polycyclic aromatic hydrocarbons (PAHs)) were analyzed in irrigation water and 144 vegetable samples collected from different gardening sites. The assessment of potential human health risk was estimated by calculating daily intake and toxic equivalency to quantify the carcinogenicity. The results show highest PAH levels in A. viridis from all studied sites. The concentrations of the sum of seven PCBs (Σ7PCBS) congeners in analyzed plants ranged between 15.89 and 401.36 ng g-1. The distributions of OCPs in both water and A. viridis were congener specific, chlorpyrifos-ethyl and p,p'-DDE were predominantly detected. Among PBDEs, only BDE47 was quantified with noticeable concentration in A. viridis, while no PBDEs were detected in irrigation water. Higher estimated daily intake values indicate that consuming leafy vegetables might associate with increased human health risks. However, calculated incremental lifetime cancer risk values indicates no potential carcinogenic risk for the local population. The results of this study provide important information on A. viridis contamination by POPs and strongly recommend implementing the appropriate measures to control the use of chemicals used in studied gardening areas. Thus in Kinshasa, urban agriculture control programs for POPs and fertilizers is very important in order to protect the public health through direct and dietary exposure pathways.


Subject(s)
Amaranthus , Hydrocarbons, Chlorinated , Pesticides , Polychlorinated Biphenyls , Democratic Republic of the Congo , Environmental Monitoring , Halogenated Diphenyl Ethers/analysis , Humans , Hydrocarbons, Chlorinated/analysis , Pesticides/analysis , Polychlorinated Biphenyls/analysis , Risk Assessment
SELECTION OF CITATIONS
SEARCH DETAIL